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Consider the quasilinear equation of first  

order 

Ut 4- f[u)x = 0 

with t, x ,  u being real scalars and f (u)  being a 

given smooth function on (-a, =) . Wanted is a solu- 

tion u = u(t, x) 

t = 0 . 
classical method of characteristics. Such a smooth 

solution exists, in general, only in some neighbor- 

t > 0 , that is prescribed for 
The solution can be found by means of the 
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hood of the  initial l i n e  t = 0 ,  u = uo(x) , Under 

wide assumptions abou-t f ( u )  , however, the solut ion 

c m  be continued beyond t h i s  neighbourhood. The con- 

tinued solut ion has, i n  general, l i n e s  of  discontinu- 

i t y  i n  analogy t o  the shock waves of  compressible 

f lu id  flow. It i s  on ly  a weak solution of the Cauchy 

problem fo r  (1). 

t i o n  does not, however, characLerize the  function 

u ( t  x) . The Cauchy problem f o r  (1) has always more 

than one weak solv-tion i f  f ( u )  i s  not l i n e a r  i n  

(-= , a) 
weak solut ion u ( t  x) spoken of above i s  or ig ina l ly  

thought of as 

The property of being a weak solu- 

Lt must be remembered tha t  the par t icu lar  

u ( t  x) = 15rn u ( t  , x ;  s) 
EJfO 

(2) 

where u ( t  x : e )  i s  the solut ion of the parabolic 

second order equation ( e  > 0) 

( 3 )  Ut + f ( u ) x  = cum 

w i t h  the  sarne i n i t i a l  data uo(x) a t  t =O.  This is, 

of course3 a complicated descr ipt ion of t h e  particu- 

l a r  weak solution u ( x 3  t )  , and it is an important 
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and apparently not completely solved problem t o  

characterize t h i s  solution u ( x ,  t )  i n  substant ia l ly  

simpler ways. 

approach t o  t h i s  question. 

The present note contains another 

I n  order t o  j u s t i f y  the subsequent procedure 

we begin by quoting known re su l t s  about the Cauchy 

problem f o r  (3) and about the l i m i t  ( 2 ) .  

tion u(L x :  e )  of (3) w i t h  given i n i t i a l  values 

u,(x) a t  t = o ex i s t s  if f ( u )  i s  "suff ic ient ly  

smooth" and i f  uo(x) i s  bounded, luo(x)l  6 M and 

smooth, ud(x> bounded:, the solut ion u ( t ,  x) has 

the same bound M (see [ e ] ,  end sf page 277). I T  

u,(x) is bounded and monotone the f'unctions 

u ( t  , x : E) converge i n  t h e  mean, as E 4 0 t o  a 

function u ( t 3  x) i n  any f i n i t e  in te rva l  of any 

straight l ine  (see [2], theorem 1). 

The solu- 

t = to 2 0 

Let h(u) E C c ( - - a  m )  and l e t  

F(u) = h(u)df(u)  = 1 h(u) fc(u)du  . 

On multiplying the d i f f e r e n t i a l  equation (3) on both 

s ides  by h(u) we may write the resu l t ing  equation 
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2 
I ( U ) t  -t- F(u)x = E ( u ~ ~ ( u ) ) ~  - ch'(u)u, 

( 5 )  
2 = cI(u), - sh'+l)u, . 

In  t h i s  equation 

subst i tuted.  

t es t  function p ( t , x )  i n  the  open ha l f  plane 

t > 0 

plane and of class C' and on in tegra t ing  over t h i s  

ha l f  plane we obtain (after some integrat ions by part) 

u = u ( t , x ;  e )  i s  supposed t o  be 

On multiplying (5) on both sides by a 

(function w i t h  compact support i n  t h i s  ha l f  

t > O  t>o 

w i t h  u = u ( t 9  x ;  s )  . Now let G > 8 go t o  zero. 

From the  convergence u ( t  x ; e )  a u ( t  x) as ex- 

plained above and from 

inferred t h a t  

! u ( t  9 x ; e) !  $ M it i s  easily 
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holds also i n  the mean on every f i n i t e  in te rva l  on 

any l i n e  t = const; the same holds for F The in te -  

gral on the l e f t  of  (6) s tays  uniformly bounded as 

e -3 0 . Consequently, the in t eg ra l  on the le f t ,  

u = u( t ,x ;c )  tends toward the same in t eg ra l  w i t h  

u = u ( t , x )  . The first  term on the right is eas i ly  

seen t o  go t o  zero. The second term i s  always 0 

as long as h ' (u)y( t ,x)  5 0 holds for a l l  .i; x, u . 
Hence we conclude: 

The l i m i t  function u( t ,x )  s a t i s f i e s  the 

inequal i ty  

whenever 

h ' (u)q( t ,x)  2 0 

holds for a l l  t x ,  u e 

Condition (8') i s a t i s f i e d  If h = 1 o r  3s %L 
h = -1 and if CI) i s  an arbitrary test  function i n  

the open half plane t > 0 e In  t h i s  case there  holds 
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respectively.  

w i t h  I = u F = f is both 2 0 and 5 0 There- 

fore  the statement made above includes the statement 

t h a t  u ( t 3 x )  i s  a weak  solution of (1) : 

The r e su l t  is t h a t  the in tegra l  (8) 

holds f o r  every t e s t  function cp(t9x) i n  the ha l f  

plane t > 0 . 
I n  order t o  see more clearly what t he  proper- 

t y  (8), (8') means we consider the case where the 

solut ion u ( t , x )  i s  of class C' i n  the t-x-plane, 

except on a f ini te  number of smooth l i n e s  of discon- 

t i n u i t y  along each of which it has limits U-~U '  on 

the two s ides  4 
say i n  t h i s  case t h a t  u i s  of class PC' , Let the  

t e s t  function CD be of the form 

where x = x ( t )  i s  the  equation of t he  discontinufty 

l i n e  and where x w i t h  E: 3 0 , i s  given by 
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Y(t) i s  a nonnegative t e s t  function which i s  first 

kept fixed and l a t e r  made t o  approach a 6-function 

around a given value of t . 
becomes the  sum of the two in t eg ra l s  

The i n t eg ra l  (8) now 

and 

By v i r tue  of (8) the sum is 

lows eas i ly  t h a t  (13) -3 0 as e + 0 . (12) equals 

2 0 From (11) it fo l -  

and it i s  c l ea r  t h a t  (14) converges t o  
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(25) holds (see (8’)) if 

(15’) h’(u) 2 0 and T ( t )  2 0 . 

If now Y(t) is made to concentrate upon a single 

value t (15) becomes simply 

(16) (I(u+) - I(u-))i- (F(u+) - F(u’)) 2 0 

and this holds whenever 

(16’) h(u) non-decreasing. 

(It is easy to -see  tha& condiQion (15‘) may be relaxed 

to (16’).) 

If the whole argument is applied to (10) in place of 

(8) there results the wellknown formula 

(17) @+=- u-)? - ( f ( U + )  - I+-)) =: 0 * 

Altogether we have the following result: 

The inequality 



-9- 

holds whenever (16') holds, 

The meaning of this 

when the special increasing 

fo 9 

h(u) = I  k 3  

inequality becomes clear 

functions 

u < uo 

u 2 uo 

are used. In this case there follows from (4) 

0 
0 ,  u < u  

> 
qu) = {" uo 2 F(u) = { 

u-uo 9 u 2 u o  f(u) -quo), u = uo. 

4- kJe suppose that uo l i e s  in the interval u-, u 

and we distinguish between the two cases 

In either case the simple calculations furnish the 

result that-we write u in place o f  uOl- 

I - 
u' -u u' - u  

f (u') - f (u) 
-1. 

holds. Geometrfcally this mews in the case a )  that 

the curve v = f(u) l ies  above the chord (the chord 
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f (u- ) )  and (u' f(u+))) in subtended between (u- 

the interval 

lies below the  chord in t h e  interval (u' un) a 

(u- u') , and in the case e )  that it 

This is precisely the condition E introduced 

by 0. A. Oleinik [31. It would be of considerable 

interest to prove the uniqueness of' the weak solution 

of the Cauchy problem for (1) under the additional 

condition (8) (8'). 
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